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Abstract. We show that the non-linear response of certain direct gap semiconduc- 
tor superlattices is greatly enhanced when the separation of the lowest conduction 
bands is comparable with the magnitude of the principal gap. The mechanism which 
results in this enhancement is virtual transitions to higher subbands. Examples of 
(InAs)l-,(GaSb),/AlSb superlattices expected to exhibit the enhanced non-linear 
response in the near-infrared region of the spectrum are presented. We also investi- 
gate non-linear response in semiconductor superlattices at ultrashort times (- 100 fs). 
In our scheme a full account is given for the first time of band structure effects upon 
transients. We then use a three-level model to determine the conditions under which 
predictions, based on the steady-state response theory and the golden rule, break 
down in structures with closely spaced energy levels. 

1. Introduction 

We recently proposed a new mechanism which is expected to lead to greatly en- 
hanced third-order optical susceptibilities in semiconductor superlattices (Morrison et  
a1 1989). This new mechanism involves virtual excitations to higher subbands. Such 
processes have not been examined in the literature, although they can be readily un- 
derstood in terms of the general theory of non-linear optical phenomena (Shen 1984, 
Flyzanis 1975, Wherret 1983, Kelly 1963). In particular they do not belong to the class 
of excitonic non-linearities which have recently dominated the literature on the sub- 
ject (Haug and Schmitt-Rink 1985, Chemla 1988, Miller 1989, Wolf e2 a /  1987, Chang 
1985). In the previous report we proposed specific InAs-ZnTe and CdTe-Hg,-,Cd,Te 
superlattice structures expected to exhibit an enhancement of the non-linear response 
due to this mechanism. The usefulness of the above structures is limited due to the 
difficulty encountered in growing samples with dislocation free interfaces. In this paper 
we, first of all, describe in greater detail the new mechanism expected to enhance the 
non-linear response. We also propose several (InAs),-,(GaSb),/AlSb superlattices 
expected to display the large non-linear response. These structures do not have the 
growth problems associated with the previously proposed superlattices and have the 
added advantage that their optical gaps span the near-infrared region of the spectrum 
used in long distance optical communications. 

Secondly, we present a study of the transient features expected in such structures 
upon application of very short laser pulses. To achieve this end we employ standard 
quantum mechanical techniques familiar to the materials scientist. We determine 

0953-8984/90/224879+15$03.50 @ 1990 IOP Publishing Ltd 4879 



4880 I Morrison and M Jaros 

the regime of energy separations versus pulse length at  which the Fermi golden rule 
breaks down and illustrate quantitatively the consequences of this breakdown upon the 
transient response. We recover the transient familiar from earlier studies of molecular 
and bulk systems and show that in the structures proposed above this breakdown is 
of no practical significance. This means that ,  in this case, the conventional models 
of higher-order susceptibilities (Shen 1984, Flyzanis 1975, Wherret 1983, Kelly 1963), 
which assume a steady-state response and related approximations, remain valid for 
pulses longer than 50 fs, (50 x s). However, since the essence of the higher-order 
mechanism stems from the availability of strong dipole matrix elements between higher 
subbands, and since the momentum wavefunctions of such subbands are broadened 
by quantum effects a t  the interfaces, we conclude that a full band structure approach 
will be needed to  provide a quantitative account of such non-linear response. This is 
in good accord with the conclusions obtained in calculations similar to  ours on bulk 
semiconductors (Wherret 1983, Fong and Shen 1975). It is, however, in contrast with 
the band blocking mechanism of changing the refractive index in which the effects of 
higher subbands are not very important. In our assessment of the transient response 
we also consider band structure effects such as those that occur when superlattice 
states derived from different points of the bulk Brillouin zone interact (Brown e t  a1 
1987). No such transient effects have been considered in the literature. 

2. Superlattices with a large virtual non-linearity 

There are a number of processes that can bring about large optical non-linearities in 
man-made semiconductor structures. Nonlinear here means that the refractive index 
of the semiconductor microstructure depends on the intensity of the applied field. A 
large intensity dependence of the refractive index is desirable as it provides the basis of 
optical signal processing (Thylkn 1988). The most exploited mechanism for generating 
optical non-linearities in semiconductor microstructures is band filling. The change 
in the refractive index is caused by blocking the quantum states normally available 
in the conduction band. In order to  observe non-linearity due to  such processes, a 
high incident field is needed to  produce the required concentrations of electrons and 
holes. Hence the change in refractive index is achieved a t  the cost of strong energy 
dissipation (absorption) in the material. This large power requirement is a major 
disadvantage in device applications. Another source of non-linearity in semiconductors 
can be described by the virtual excitation of electrons to  higher bands via many-photon 
processes, see figure 1 for example. Such virtual transitions can also be used to describe 
the excitonic energy shifts observed in the optical Stark effect (Frohlich e t  a1 1987, 
Knox el a1 1989, Peyghambarian 1989). These processes are not accompanied by the 
high absorption rates associated with the band filling effect. It is with the virtual 
mechanism that we shall be concerned in this study. In bulk semiconductors, this 
non-linearity is generally too small to be useful for applications. However, we shall 
show it is possible t o  design semiconductor superlattices such that the separations of 
energy levels and the transition probabilities between them satisfy the requirements 
for a significant enhancement of the non-linear response. 

A large field dependence of the refractive index requires a large component of x ( ~ )  
at  w = w -w  +w (Haug 1988), where w is the frequency of the incident radiation. This 
component of x ( ~ )  causes a response of the system a t  the exciting frequency which 
results in refraction. The expression for x ( ~ ) ( w ,  -U,  w )  in perturbation theory contains 
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Figure 1. A schematic diagram of the offsets and energies of confined states in 
a type I semiconductor superlattice. Eg is the band gap of the smaller band gap 
constituent, AE, is the conduction band offset and AE, the valence band offset. The 
energy positions of three superlattice states are shown, V is the uppermost valence 
state and C1 and C2 the first two conduction states. It is seen how, with a large 
conduction band offset, the energy separation between conduction states, Ecz - & I ,  
can be made comparable withthe superlattice fundamental gap, Ecl - E". 

terms of the form (Flyzanis 1975, J h a  and Bloembergen 1968), 

x (3 ) (w ,  -w ,w)  = e4 POlPl2P2 1PlO 
Vh3m4w4 (U10 - w)(w20 - 2W)(Wl0 - w )  

where wij = (Ei - E j ) / h  and pij is the dipole matrix element between states i and 
j .  This term will become very large if the dipole transitions 0 -+ 1 and 1 -+ 2 
are allowed and have comparable matrix elements, and w l 0  x w ,  w z 0  x 2w.  Under 
such conditions all three denominators in (1) become very small. If we now identify 
state 0 with V, state 1 with C1 and state 2 with C 2  in figure 1, we see that  a large 
enhancement of x ( ~ ) ( w ,  -w, w )  is expected in a direct gap semiconductor structure 
where the fundamental gap is comparable with the separation between the first two 
conduction bands, with the energy of the incident radiation tuned just below the band 
gap, i.e. E,, - E,, FZ E,, - E, M h w .  The conditions required for the enhancement 
of ~ ( ~ 1 ,  as considered above, are never fulfilled in natural systems, nor can they be 
fulfilled in GaAs-Gal-,Al,As quantum well structures. 

However, in certain semiconductor superlattices the required combination of al- 
lowed transitions and energy separations can be achieved. The criteria for such a 
situation are shown schematically in figure 1. They involve the combination of a large 
conduction band offset, small conduction band effective mass and small band gap 
of one of the constituents. The.band line up should be type I in character, i.e. the 
gap of one constituent lies entirely within the gap of the other. This band line up 
confines both conduction and valence states in the same material, causing symmetry 
allowed transitions to  have large matrix elements. The conduction band offset needs 
to  be large enough to  support a t  least two confined states. In semiconductor super- 
lattices both transitions V+C1 and C1+C2 are allowed. The transition V+C1 is 
the across gap transition and is allowed, as i t  is in bulk materials. The transition 
C 1 + C 2  is made allowed by momentum mixing caused by the superlattice potential, 
it is typically of the same order of magnitude as the across gap transition (Brown et a1 
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1987). The existence of the transition Cl+C2 has also been observed experimentally 
in GaAs/AlGaAs structures (West and Eglash 1985). 

Previously we presented examples of InAs/ZnTe and HgzCdl-,Te/CdTe superlat- 
tices where the spacing of the energy bands meets the above criteria (Morrison et a1 
1989). The  nature of the constituents make i t  difficult to  grow well defined interfaces, 
limiting their practical use. Here we propose a series of superlattices expected to  meet 
the above criteria with optical gaps in the near-infrared region of the spectrum. We 
consider the (InAS),-,(GaSb),/AlSb system. All materials in this superlattice are 
lattice matched to  within - 1% so well defined dislocation-free interfaces should be 
achievable. The  conduction band offset in this system is large (Van de Walle 1989) 
as required and is represented by the relation A E ,  = 2.01 - 0 . 8 8 ~  (eV), where x 
is the alloy concentration. Similarly the valence band offset is represented by the 
relation A E ,  = 0.563: - 0.1 (eV). These expressions are obtained by linearly interpo- 
lating between the offsets of the InAs/AlSb and GaSb/AlSb interfaces. A type I band 
alignment is predicted with 3: 2 0.2. 

Table 1. This table contains five different (InAs)l-,(GaSb),/AlSb superlattices 
expected to exhibit enhanced third-order optical response due to the mechanism 
explained in the text. A is the width of the AlSb barrier, each structure has the 
same barrier width equal to 10 monolayers. E is the width of the (1nAs)l-,(GaSb), 
wells and z is the alloy concentration. In each structure the optical gap, Ecl - E v l ,  
is equal to the separation of the lowest two conductionstates, Ecz -Eel. The optical 
gaps are seen to span the near-infrared range of the spectrum. 

30.4 30.4 30.4 30.4 30.4 
30.4 36.5 42.5 48.5 54.7 

A (A) 
B ( A )  

0.88 0.68 0.51 0.36 0.23 X 

Optical gap (eV) 1.103 0.985 0.884 0.800 0.725 

In table 1 we present a series of structures predicted to exhibit the criteria 
E,, - E,, = E,, - E,, in the near-infrared part of the spectrum. The energy sep- 
arations in these structures are the results of Kronig-Penney effective mass calcu- 
lations using the above offsets and effective masses of the alloy well material. The 
effective masses of the lowest bulk conduction band (m:) and heavy hole valecce 
band (mih) of the alloy constituents are, m:(InAs) = 0.026, m:(GaSb) = 0.046 and 
m;lh(InAs) = mgh(GaSb) = 0.40 (Cardona 1967). Effective masses in the alloy are 
obtained by interpolating between these values. The parameters in table 1 were ob- 
tained by first fixing the well and barrier widths ( A  and B )  and then varying the alloy 
concentration until the equality in the separation of energy bands is achieved. 

3. Transient response 

Advances in laser technology over the past decade make i t  possible to  perform spec- 
troscopic experiments on timescales of less than than 100 fs (Flemming and Siegman 
1986). Such time resolution is usually achieved by creating ultrashort pulses of laser 
light and performing pump and probe experiments, i.e. a short pulse of laser light is 
used to  excite the sample and a time delayed pulse used to  probe it later (Shah e t  a1 
1987). For example, time resolved luminescence spectra have been used to  estimate 
the capture times of electrons and holes by semiconductor quantum wells (Deveaud 
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et a1 1988). Also, ultrashort laser pulses have been employed to  investigate non- 
linear optical properties of semiconductors, such as the AC Stark effect observed in 
semiconductor superlattices (Frohlich e l  a1 1987, Knox et a1 1989, Peyghambarian 
et a1 1989). Time resolution in this case makes it possible to  distinguish between 
contributions from real and virtual populations t o  the AC Stark shift. 

Normally, when making theoretical predictions of the optical response of semi- 
conductors, such as those made in section 2,  a steady-state response is assumed, 
i.e. the susceptibilities and absorption coefficients being independent of time . Such 
steady-state response is established a t  times much longer than the timescales of typ- 
ical relaxation processes in the semiconductor. However, a t  times of order 10-100 fs 
the semiconductor is exposed to  the exciting laser light in the experiments mentioned 
above the timescale is not long enough to  establish a steady-state response. Ai these 
u1t:ashort times Fermi's golden rule of transition rates may no longer hold, i.e. sig- 
nificant absorption may occur a t  frequencies away from the resonant frequencies of 
the material (Schiff 1978). This is manifest in a significant broadening of the absorp- 
tion spectra. It is borne in mind that such effects might be particularly significant 
in semiconductor superlattices. These structures consist of alternating layers of semi- 
conductors (e.g. GaAs and AMs) with similar lattice constants and symmetry. The 
magnitude of the step-like energy difference a t  the interface determines the degree of 
confinement of electron and hole levels in one of the constituents (e.g. GaAs). The 
typical value of this so called conduction and valence band offset is a few tenths of 
an eV so that  the confined levels are separated by a 100 meV or so. The dipole 
(optical) matrix elements between adjacent levels derived from the conduction band 
edge of GaAs are large. This creates a novel situation quite unlike anything one can 
encounter in a bulk material. For example, we find from uncertainty relations that  
the characteristic time for such transitions is of order At = 2n-h/AE, where A E  is 
the separation between the relevant confined levels. When A E  - 10 - 100 meV, we 
have At  - 0.4 - 4 ps. This is to  be contrasted with At N 3 fs for band gap energy of 
bulk GaAs. 

Here we set out to  provide the first basic guidelines for identifying the key spec- 
troscopic features characteristic of superlattices exposed to  ultrashort light pulses. 
We identify the regimes in which the transient nature of the optical response of a 
semiconductor, and the breakdown of the golden rule become important. We use 
time-dependent perturbation theory to  calculate the first- and second-order absorp- 
tion effects in semiconductor superlattices a t  times up to  hundreds of fs. We show 
how in certain superlattices anomalies in the transient response are emphasised. This 
will set out the limits of applicability of our analysis presented in section 2. 

3.1. Method 

Our predictions can be understood in terms of a simple three-level model of a semi- 
conductor superlattice consisting of one valence band state, state 0 ,  and the first two 
conduction bands, states 1 and 2. The energy separations between these states de- 
pend on the magnitude of the well/barrier widths and by the type of superlattice 
constituents. We assume a time-dependent Hamiltonian of the form H = H ,  + A H ,  
where H, represents the superlattice Hamiltonian and A H  takes the form 

A H  = (1 - e-"t)2H'sinwt t > 0 (2) 

A H = O  t < 0. (3)  
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This represents a harmonic perturbation turned on in a rise time T = 1/a from t = 0. 
In the case of radiation, in the dipole approximation, H’ = qAp,/m,c (the polarisation 
being in the 2 direction) where A is the vector potential, p ,  the momentum operator 
in the 2: direction, q the electronic charge, me the electronic mass and c the speed of 
light (Bassani and Pastori Parravicini 1975). The finite rise time, T ,  is necessary as it 
is unreasonable t o  think of the perturbation as being instantly turned on. I t  will be 
shown later how, if an unreasonably small rise time is assumed, spurious results can 
be obtained. The  value of the rise time chosen in the following calculations is much 
greater than the period of oscillation but much smaller than the length of the laser 
pulse. 

The time-dependent solution of the full Hamiltonian, Q, is described as an expan- 
sion in the eigenfunctions of the unperturbed Hamiltonian, H,, 

HoUn = EnUn (4) 

The coefficients, u n ( t ) ,  are expanded as a power series in orders of H’ 

Before t = 0 the system is assumed to  be in the unperturbed state 0 ,  the uppermost 
valence state. The method of time-dependent perturbation theory (Schiff 1978) then 
gives 

.p(t) = 6,, 

uh l ) ( t )  = ( i ~ ) - l ( n l H ’ I O ) F ( w n o , w , t )  n # 0 

where 

- 1 exp[i(wno - w ) t ]  - 1 
‘(Uno - w )  

- 

exp{ [i(w,, + w) - &It} - 1 
i(wno + U )  - Q 

exp{ [i(wno - U )  - ~ ] t }  - 1 
i(wno - U )  - Q 

+ - 

and 

G ( w n k ,  uno, w ,  t )  = exp(iwnkt’)[ 1 - exp( -&’)I2 sinwt’ F(wn, ,  U ,  t’) dt’ (11) 1’ 
(wnk is defined as ( E n - E k ) / h ) ,  Integration of the time-dependent factor in the second- 
order coeScient, G, is very tedious and involves 32 terms in total, hence numerical 
integration was employed when evaluating it.  
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3.2. First-order effects 

In order to  demonstrate the transient nature of the response to  first order in the field 
a t  ultrashort times, we consider a system in which wz l  << w l 0  and excite it with 
radiation a t  the resonant frequency w = wl0. This represents a superlattice in which 
the lowermost conduction bands, represented by states 1 and 2 ,  are closely spaced in 
energy. We then calculate the expectation value of the electronic dipole to  first order 
in the applied field, 

(qz)(l) = (VdO)lqzlQ(')) + cc (12) 

where and Q(l)  represent the zeroth- and first-order wavefunctions respectively 
and q is the electronic charge. With the definitions of U$,') and U$,') in (7) and (8), and 
with H' = qAp,/m,c, this can be written as 

Here CC represents the complex conjugate of the first part of the equation and use 
has been made of the commutation relation (Merzbacher 1970) 

We now consider contributions to the expectation value of the first-order dipole 
from the two excited states of the three-level system and write 

D, and D, being the contributions due t o  states 1 and 2 respectively. 
First of all, consider the contribution from state 1, D,. At times much greater 

than the rise time, t >> 1/a (assumed much greater than the period of the radiation), 
we can approximate 

(16) F ( w l o ,  w = w l 0 ,  t )  N it. 

This contributes the term 

to the total first-order dipole, i.e. a sinusoidal term with the same frequency as the 
perturbing field. At long times this term will dominate, contributions from other states 
away from resonance becoming increasingly insignificant as time increases. This is the 
long time limit where the golden rule applies. 

However, a t  very short times there is a significant term due to  state 2 ,  D,. As- 
suming w , ~  << w l 0  we can write 
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1 . 7 8  

This is a slowly varying function in time, as wgl is assumed small. The electronic 
dipole contribution from state 2 can now be written 

r - X 

This represents a sinusoidal function with the frequency of the applied field, w ,  mod- 
ulated by a slowly varying function with frequency wa l .  This term will be significant 
when the ratio ID2/D11 is large. We can approximate, 

where both momentum matrix elements, (a lp ,  10) and (1 Ip, I O ) ,  have been assumed 
to  be allowed and approximately equal. For time in the range of 100 fs this gives a 
/Dl/D21 close to  unity if hwal  is in the range of 10 meV. 

' 9 2 - -  

1 8 8  901 
51 8 4  ; I  1 8 2  

X 

r ks 2 ___, 
Figure 3,  The dispersion along the T-Z of the first three conduction bands of 
the GaAs-A!& s1ru:ture described in the text. r-Z is the line in the superlattice 
Brillouin zone from the centre to the edge in the direction of growth (001). The 
bands are labelled r and X describing which minima of the bulk band structure they 
originate from. Note the closeness in energy of the first two bands at the centre of 
the superlattice Brillouin zone (Brown e t  a /  1987). 

As a specific example of a structure where this effect will be prominent consider 
the GaAs-A1As superlattice whose period consists of 12 monolayers of GaAs and 
8 monolayers of AlAs. The band structure of this superlattice has been obtained 
from a full scale pseudopotential calculation with the inclusion of spin-orbit coupling 
(Brown e t  a1 1987). The lowest conduction bands of the superlattice are plotted, 
along the I?-Z line in the superlattice Brillouin zone, in figure 2. At the centre of the 
superlattice Brillouin zone the separation of the first two conduction bands is seen to 
be approximately 10 meV and the band gap 1.77 eV. As described above, in order 
that  the contribution to the expectation value of the first-order dipole, from 
state 2 (the second superlattice conduction band) be important, the momentum matrix 
elements between the uppermost superlattice valence state, state 0 ,  and the lowermost 
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superlattice conduction states, states 1 and 2, at the centre of the superlattice zone, 
need to  be comparable. If these matrix elements, (2Ip,lO) and (llp,JO), are both large 
and the superlattice is illuminated by radiation at  the resonant frequency wl0 ,  at  
ultrashort times the contribution to the expectation value of the first-order dipole due 
to the presence of state 2 will be important. 

The existence of two superlattice states close in energy and both having allowed 
momentum matrix elements to states at the valence band maxima is unusual but is 
achieved here due to momentum mixing in the superlattice conduction states. To 
explain this a brief description of the method of calculation employed to obtain the 
band structure in figure 2 is needed. In the calculation, the superlattice wavefunctions, 
Qs, are written as a linear combination of bulk Bloch states of GaAs, cp(n, k ) :  

nk 

Here n represents the bulk band index and k the reduced wavevector in the bulk Bril- 
louin zone. The values of k in the expansion are uniquely determined by the periodic 
boundary condition given by the superlattice period. The uppermost superlattice va- 
lence states are constructed from the bulk zone-centre ( k  = 0) Bloch states of the 
uppermost GaAs valence band. Superlattice states with large momentum matrix el- 
ements to this state require significant contributions to their wavefunctions from the 
bulk zone-centre Bloch states of the lowermost GaAs conduction band (Brown et a1 
1987). This is due to  the strong allowed vertical transition across the gap in bulk 
GaAs. 

r Wave v e c t o r  k X 

A-Line of  bulk GaAs Bri l louin zone 

Figure  3. Plots 01' the expansion coeifiicients associated with the lowest two con- 
duction states a t  the centre of the superlattice Brillouin zone, see figure 2.  Only 
contributions from the lowest conduction band of GaAs are shown, contributions 
from other bands being insignificant for the states in question. Note how both states 
are derived from a mixture of GaAs Bloch states from the bulk r and X minima. 
The states are said to be significantly mixed in momentum space. The large contri- 
butions from the GaAs bulk r minimum result in allowed optical transitions to the 
uppermost valence state in both cases. 

In figure 3 we plat the expansion coefficients associated with the first two super- 
lattice states at  the superlattice zone centre. Both states are seen to have significant 



4888 I Morrison and M Jaros 

contributions from the lowest GaAs conduction band zone-centre states, along with 
significant contributions from the GaAs zone-edge states-the states are said to  be 
mixed in momentum space. This means both states have large momentum matrix 
elements t o  the uppermost superlattice valence state. 

The expectation value of the first-order dipole, with the incident radiation a t  the 
resonant frequency w = wl0 = 1.77 eV, as a function of time, is plotted in figure 4 .  The 
rise time is 20 fs and momentum matrix elements from the uppermost valence band 
to  the first two superlattice conduction band states a t  the superlattice zone centre 
are assumed equal. At very short times the slowly oscillating contribution due to the 
proximity of state 2 is clearly seen to  be important. At longer times the contribution 
from state 2 becomes dwarfed by the contributions from state 1. 

I , , , , , ,  I I I I , ,  , I I I I ,  I I '  

0 20 40 80 80 100 120 140 I60 LBO 200 220 240 280 280 300 320 310 380 380 400 

Time (fs) 

Figure 4. The calculated expectation value of the first-order dipole in a system 
with hwlo = 1.77 eV and hwzl = 10 meV as a function of time. The radiation field 
is tuned to the resonance w10. The slowly oscillating component of the response 
due to state 2, the second conduction band state, is clearly seen to be important at 
ultrashort times. 

3.3. Second-order effects 

To show the relative importance of second-order effects a t  ultrashort times we con- 
sider the second-order transition probabilities, lu(k2)I2, and compare them to first-order 
transition probabilities, 1uF) l2 .  As previously stated, the second-order coefficients are 
calculated by the numerical integration of (11). The importance of including the fac- 
tor (1 - e-at)  in the harmonic perturbation becomes apparent when calculating the 
second-order coefficients. If the rise time, 7 = l / a ,  is made very short (shorter than 
the period of the radiation) spurious maxima appear in the second order coefficient 
a t  frequency w = wZ1. 

This is shown in figures 5(a )  and ( b )  where the magnitude of the second-order 
coefficient la!$)[ is plotted as a function of the frequency of the incident radiation, w .  
The system is modelled with hwlo  = 600 meV, hwal  = 400 meV and time t = 100 fs. 
Two values of the rise time, 7,  are considered ( a )  7 = 1 fs and ( b )  7 = 20 fs. In 
both cases we see the principle maxima at  hw = hw20/2 = 500 meV, corresponding 
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3.30 0.35 0.40 0.45 0.50 0.55 I 

FW (E lec tmn Vol t s )  

V - 
I 0 3 0  0 3 5  0 4 0  0 4 5  0 5 0  0 5 5  060 

Tw (Electron Vol ts )  
Figure 5 .  Two plots of la(22)1, for example, in a system with kwlo  = 600 meV and 
hw2l = 400 meV as a function of the energy of the incident radiation, Aw. The time 
of calculation for both plots is 100 fs. In (a) the rise time, T, is 1 fs and in ( b )  T 
is equal to 20 fs. It is clearly seen how the secondary maximum at  k w  = kw21 is 
drastically reduced as the rise time is increased. 

to  two-photon absorption. In case (U) there is also a secondary maxima at  hw = 
hw2, = 400 meV, this maxima is seen to be much reduced in case ( b )  where the rise 
time is much longer. In order to eliminate effects due to this secondary maxima a 
rise time of 20 fs is chosen in the following calculation. We should also note the finite 
widths of the principle maxima at  finite times. Second-order two-photon absorption 
is important at frequencies significantly away from the resonant frequency w = w z O / 2  
at the ultrashort times considered here. 

To emphasise the width of the second-order absorption peak and the relative im- 
portance of first-order and second-order processes at  ultrashort times, we consider a 
three-level system with hw = hw2,/2 = 0.5 eV and calculate 1ug)12 as a function of 
hw,,. The results of this calculation at  time t = 100 fs are plotted in figure 6. The 
maximum of lu(22)I2 is seen to be at  wl0  = w ,  as expected. The magnitude of u p )  is 
large when w l 0  is close to  w as state 1 then acts as a virtual state close to resonance in 
the two-stage process of excitation to state 2. The half width of the peak in figure 6 
is - h / t ,  this relation will continue to times comparable with typical relaxation times 
in semiconductors, after which the width will be dominated by relaxation processes. 
Typical relaxation times are much greater than the 100 fs timescale considered in this 
study. In the limit of very large times the peak in figure 6 will become very narrow, 
second-order absorption becoming insignificant except at wl0  = w. However at  finite 
times the peak is seen to be significantly broadened. In the case considered in fig- 
ure 6 (t = 100 fs) the width of the peak is approximately 100 meV, i.e. significant 
second-order absorption results when hwlo is in the energy range hw2,/2 & 50 meV. 

We have seen previously that a superlattice in which the second-order absorption 
is significant at  ultrashort times requires that the band gap energy, hw,,, is equal to 
the separation of the first two conduction states, h w z l ,  within the energy width of 
the peak of the principal maximum in 1u(22)I2, see figure 6. For times of 100 fs this 
width is approximately 100 meV. Such criteria of the band separation in a superlattice 
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Figure 6.  The calculated value of 1a?)\’, for example, in a system with an incident 
radiation frequency hw = h w ~ o  /2  = 0.5 eV as a function of the energy separation 
hwlo. The time is 100 fs and the rise time 20 fs. The finite width of the peak at  this 
ultrashort time is clearly seen. At longer times the width of the peak will narrow 
approaching the delta function limit. 

can be achieved in a system with has a large conduction band offset and small band 
gap of one of the constituents, see figure 1. The band gap line up should be type I 
in character, i.e. the gap of one constituent lies entirely within the gap of the other. 
This band line up confines both conduction and valence states in the same material, 
causing symmetry allowed transitions to  have large matrix elements. The conduction 
band offset needs to  be large enough to  support a t  least two confined states. The large 
offset causes the separation between the confined states to  be reasonably large. These 
are the same criteria for the enhancement of x ( ~ )  as described in section 2. 

To  emphasise further the importance of second-order absorption we consider the 
resonant case where wl0  = w = w21 and calculate the ratio of the probability of a 
second-order transition to  state 2, laF)12, to  the probability of a first-order transition 
to  state 1, l ~ ( 1 ~ ) l ~ .  At the resonant conditions, w = wl0 = w21 we can approximate the 
functions F and G, see (10) and ( l l) ,  by 

and 

Thus we can write, 

where we have used the relation A ,  = cE,/w, E, being the electric field strength. 
We assume that  the matrix element (2lp,I1) represents an allowed transition. We 

have shown that in such cases the magnitude of a typical matrix element is 0.1 atomic 
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units. Equation (24) now shows tha t ,  a t  times of the order of 100 fs, and using 
a resonant frequency typical for the structures proposed in section 2 (w  0.5 eV), 
the second-order absorption will be comparable with first-order absorption a t  field 
strengths of the order 5 x lo5 V cm-l.  Such field strengths correspond t o  a laser 
intensity of 0.3 G W  cm-,, well within the range of the current technology. 

3.4. Transient effects in superlattices with large non-linearity 
The  results of subsections 3.1-3.3 show that t,he breakdown of Fermi’s golden rule at 
ultrashort times causes deviations from the non-linear optical behaviour predicted by 
steady-state theory. With radiation tuned slightly below the band gap energy, the 
degree of anomalous response depends on the energy separation of the superlattice 
conduction subbands. We have shown how, at  times of 100 fs, large deviations are ex- 
pected from the results predicted by the golden rule when the conduction band energy 
separations are of the order of tens of meV. The effect due to  the breakdown of the 
golden rule a t  ultrashort times in semiconductor superlattices has not been previously 
considered in the literature. For example, Khurgin (1988) has presented the results 
of calculations on the non-linear optical properties of asymmetric Gal-,A1,As-GaAs 
quantum well structures where the steady-state formalism is adopted. In the struc- 
tures he considered the separation of conduction states is of the order 10-100 meV. 
Deviations from the results predicted by Khurgin are expected if experiments are 
performed with timescales of 100 fs. It is important to  realise that the physical mech- 
anism (i.e. the virtual transitions) responsible for non-linear response in SEED (Miller 
1989), or asymmetric well structures, is quite unlike that  proposed in section 2.  In 
the structures presented in section 2,  where the predicted enhanced non-linear optical 
properties is caused by virtual excitations to  the higher conduction bands, the separa- 
tion of the lowest conduction bands in the InAs-ZnTe and Hg,Cd,-,Te structures are 
0.64 eV and 0.39 eV respectively. These conduction band energy separations are large 
enough so that deviations from the golden rule will be unimportant a t  times of 100 fs 
and the conventional (steady-state) formalism will suffice to  predict their non-linear 
optical properties. The  broadening of the maxima of the second-order coefficients 
a t  ultrashort times predicted in subsection 3.3  is also useful for characterisation of 
materials expected to  possess large virtual third-order susceptibility. The transitions 
involved in the second absorption are the same as the virtual transitions considered 
in section 2 which contribute to  the third-order susceptibility. The broadening of the 
maxima, see figure 6 ,  means that even if a certain difference in the energy separations 
exist between E,, .- E,, and E,, - E, the material may still exhibit an enhanced 
third-order susceptibility. This energy difference a t  100 fs is - 50 meV. Such a broad- 
ening of course competes with the contributions due to  the relaxation and dispersion 
processes which are usually considered in the literature (Wherret 1983). 

Finally, it is worth pointing out that  the three-level model we have chosen as a basis 
of our estimate of the main steady state as well as transient non-linear properties is 
realistic in the structures in question. This is unlike the physical situation which arises 
in the case of, say, optical Stark phenomena in GaAs quantum wells (Chemla 1988, 
Frohlich et a1 1987, Knox et a1 1989, Peyghambarian et a1 1989). There the gap energy 
greatly exceeds the energy separation of the lowest confined levels and a large number 
of higher-lying resonances may affect both the Stark shifts and transients. Quite the 
opposite happens in the structures proposed in section 2.  The near gap radiation 
preferentially engages only the adjacent subbands whose dipole matrix element with 
each other is large, the other levels either do not have the correct energy, parity or 
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momentum (Brown e t  a1 1987) to  compete efficiently with the contributions of the 
dominant three levels. 

4. Conclusions 

We have shown how virtual transitions to  higher superlattice subbands can lead to  
a significant enhancement of the third-order non-linear susceptibility. The basic re- 
quirement for a large enhancement to  x ( 3 )  is that the fundamental band gap energy 
be comparable with the separation between the lowest superlattice conduction sub- 
bands. Under such conditions a large enhancement of x ( ~ )  is expected with the ex- 
citing radiation detuned slightly below the band gap energy. The criteria needed to  
achieve such a superlattice band structure have been laid down and specific examples 
of (InAs)l-,(GaSb),/AISb superlattices, where the effect should be observable in the 
near-infrared region of the spectrum, have been presented. 

We have also presented a study of the non-linear optical properties of such super- 
lattices subjected to  ultrashort pulses of laser light. We show that a t  times of the order 
100 fs modifications are needed to  the steady-state formalism of non-linear response 
only if the separation of conduction bands is of the order 10-100 meV. The steady-state 
formalism is adequate a t  times of order 100 fs in structures with conduction subband 
separation greater than 100 meV, this includes the structures presented in section 2. 
Naturally, the model used here to make predictions concerning the transient nature of 
the optical response in semiconductors is greatly oversimplified. For example, we have 
ignored the detailed character of relaxation processes. Other effects such as details of 
band dispersion and the width of the applied laser beam may also affect the quan- 
titative aspects of the predictions of this paper. However, we believe that  the main 
features of the transient optical response in the systems considered here is described 
realistically enough to  ensure that our predictions are qualitatively correct. 
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